TY - JOUR
T1 - A LCA on the H2S and HCl removal procedures using in HAS-clays
AU - Dowaki, Kiyoshi
AU - Kuroda, Shohei
AU - Saruya, Hidetoshi
AU - Katayama, Noboru
AU - Seo, Yuna
AU - Ishiyama, Tomoyuki
AU - Sato, Kiyofumi
AU - Kameyama, Mitsuo
N1 - Publisher Copyright:
© 2018 Japan Institute of Energy. All rights reserved.
PY - 2018/7
Y1 - 2018/7
N2 - The environmental performance of hydrogen production by steam-based gasification processes for fuel cell (FC) applications was evaluated using a Life Cycle Assessment (LCA) approach because the use of metal oxides as adsorbents or catalysts has a significant impact on the LCAs of FC applications. In this paper investigating systems for the removal of impurities from syngas, the process design of a Bio-H2 system was discussed in terms of the eco-burden of the impurity adsorbent. The HAS-Clay (a synthetic substance composed of hydroxyl aluminum silicate and clay) has particular potential as an adsorbent. This composite adsorbent can sequester H2S and/or HCl, though it is generally used in desiccant heat pumps to adsorb CO2 and H2O. By comparing two different removal systems, the role of HAS-Clay as an adsorbent was investigated via the eco-indexes of global warming potential (GWP) and abiotic depletion potential (ADP). Consequently, it was found that HAS-Clay had a direct or indirect capture capacity of H2S and HCl as well as CO2 and H2O. Compared to the conventional case in which a metal oxide is used as an adsorbent, a greater environmental benefit was obtained in the case of H2S removal. In this case, the GWPs of the two-step pressure swing adsorption (2-step PSA) +ZnO or Fe2O3 were 3.18 and 1.43 g-CO2/Nm3-Bio-H2 respectively compared to 19.4 g-CO2/Nm3-Bio-H2 for the conventional system. Furthermore, the ADPs of 2-step PSA+ZnO or Fe2O3 were 7.63 ×10-6 and 3.42 × 10-6 g-Sb eq./Nm3-Bio-H2, as opposed to 2.75×10-2 g-Sb eq./Nm3-Bio-H2 for the conventional system. On the other hand, in the case of HCl removal, a blend of HAS-Clay and CaCO3 cannot obtain any environmental benefit without either the regeneration of HAS-Clay or the substitution of clay (a natural resource). Our results may imply that HAS-Clay is an extremely important adsorbent in term of reducing the eco-burden.
AB - The environmental performance of hydrogen production by steam-based gasification processes for fuel cell (FC) applications was evaluated using a Life Cycle Assessment (LCA) approach because the use of metal oxides as adsorbents or catalysts has a significant impact on the LCAs of FC applications. In this paper investigating systems for the removal of impurities from syngas, the process design of a Bio-H2 system was discussed in terms of the eco-burden of the impurity adsorbent. The HAS-Clay (a synthetic substance composed of hydroxyl aluminum silicate and clay) has particular potential as an adsorbent. This composite adsorbent can sequester H2S and/or HCl, though it is generally used in desiccant heat pumps to adsorb CO2 and H2O. By comparing two different removal systems, the role of HAS-Clay as an adsorbent was investigated via the eco-indexes of global warming potential (GWP) and abiotic depletion potential (ADP). Consequently, it was found that HAS-Clay had a direct or indirect capture capacity of H2S and HCl as well as CO2 and H2O. Compared to the conventional case in which a metal oxide is used as an adsorbent, a greater environmental benefit was obtained in the case of H2S removal. In this case, the GWPs of the two-step pressure swing adsorption (2-step PSA) +ZnO or Fe2O3 were 3.18 and 1.43 g-CO2/Nm3-Bio-H2 respectively compared to 19.4 g-CO2/Nm3-Bio-H2 for the conventional system. Furthermore, the ADPs of 2-step PSA+ZnO or Fe2O3 were 7.63 ×10-6 and 3.42 × 10-6 g-Sb eq./Nm3-Bio-H2, as opposed to 2.75×10-2 g-Sb eq./Nm3-Bio-H2 for the conventional system. On the other hand, in the case of HCl removal, a blend of HAS-Clay and CaCO3 cannot obtain any environmental benefit without either the regeneration of HAS-Clay or the substitution of clay (a natural resource). Our results may imply that HAS-Clay is an extremely important adsorbent in term of reducing the eco-burden.
KW - 2-step PSA (pressure swing adsorption)
KW - Adp (abiotic depletion potential)
KW - GWP (global warming potential)
KW - HAS-Clay (a synthetic substance composed of hydroxyl aluminum silicate and clay)
UR - http://www.scopus.com/inward/record.url?scp=85132801411&partnerID=8YFLogxK
U2 - 10.3775/jie.97.160
DO - 10.3775/jie.97.160
M3 - Article
AN - SCOPUS:85132801411
SN - 0916-8753
VL - 97
SP - 160
EP - 170
JO - Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy
JF - Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy
IS - 7
ER -