A converse of Hörmander’s L 2-estimate and new positivity notions for vector bundles

Genki Hosono, Takahiro Inayama

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

We study conditions of Hörmander’s L2-estimate and the Ohsawa-Takegoshi extension theorem. Introducing a twisted version of the Hörmander-type condition, we show a converse of Hörmander L2-estimate under some regularity assumptions on an n-dimensional domain. This result is a partial generalization of the 1-dimensional result obtained by Berndtsson (1998). We also de_ne new positivity notions for vector bundles with singular Hermitian metrics by using these conditions. We investigate these positivity notions and compare them with classical positivity notions.

Original languageEnglish
Pages (from-to)1745-1756
Number of pages12
JournalScience China Mathematics
Volume64
Issue number8
DOIs
Publication statusPublished - Aug 2021

Keywords

  • 32A10
  • 32L10
  • L-estimate
  • Ohsawa-Takegoshi L-extension theorems
  • singular Hermitian metrics

Fingerprint

Dive into the research topics of 'A converse of Hörmander’s L <sup>2</sup>-estimate and new positivity notions for vector bundles'. Together they form a unique fingerprint.

Cite this